首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252241篇
  免费   17031篇
  国内免费   35710篇
安全科学   23399篇
废物处理   11618篇
环保管理   29077篇
综合类   103605篇
基础理论   47721篇
环境理论   211篇
污染及防治   50676篇
评价与监测   16569篇
社会与环境   15056篇
灾害及防治   7050篇
  2023年   3279篇
  2022年   8919篇
  2021年   9013篇
  2020年   8666篇
  2019年   6787篇
  2018年   7891篇
  2017年   9243篇
  2016年   9210篇
  2015年   9126篇
  2014年   11463篇
  2013年   21016篇
  2012年   16152篇
  2011年   18105篇
  2010年   15797篇
  2009年   15596篇
  2008年   15984篇
  2007年   15687篇
  2006年   14633篇
  2005年   11319篇
  2004年   8809篇
  2003年   7757篇
  2002年   6906篇
  2001年   6317篇
  2000年   5290篇
  1999年   3643篇
  1998年   2499篇
  1997年   2282篇
  1996年   2276篇
  1995年   2349篇
  1994年   2080篇
  1993年   1551篇
  1992年   1553篇
  1991年   1385篇
  1990年   1262篇
  1989年   1154篇
  1988年   1020篇
  1987年   907篇
  1986年   862篇
  1985年   872篇
  1984年   896篇
  1983年   824篇
  1982年   921篇
  1981年   818篇
  1980年   627篇
  1979年   686篇
  1978年   586篇
  1977年   514篇
  1976年   439篇
  1975年   467篇
  1974年   461篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Environmental Chemistry Letters - Nanoplastics are probably much more dangerous for living organisms than microplastics because they are more abundant and reactive. They can potentially...  相似文献   
22.
● China has pledged ambitious carbon peak and neutrality goals for mitigating global climate change. ● Major challenges to achieve carbon neutrality in China are summarized. ● The new opportunities along the pathway of China’s carbon neutrality are discussed from four aspects. ● Five policy suggestions for China are provided. China is the largest developing economy and carbon dioxide emitter in the world, the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change. The transition towards a carbon-neutral society is integrated into the construction of ecological civilization in China, and brings profound implications for China’s socioeconomic development. Here, we not only summarize the major challenges in achieving carbon neutrality in China, but also identify the four potential new opportunities: namely, the acceleration of technology innovations, narrowing regional disparity by reshaping the value of resources, transforming the industrial structure, and co-benefits of pollution and carbon mitigation. Finally, we provide five policy suggestions and highlight the importance of balancing economic growth and carbon mitigation, and the joint efforts among the government, the enterprises, and the residents.  相似文献   
23.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   
24.
Environmental Geochemistry and Health - Lake Atamanskoye is one of the most polluted aquatic environments in the South of Russia. This water body was affected by long-term pollution by effluent...  相似文献   
25.
Catalytic activity of spinel ferrite in breaking down toxic dye materials are promising due to their uniqueness. In this study, aluminum-doped copper zinc ferrite, Cu0.4Zn0.6-xAlxFe2O4 (x = 0.0, 0.2, 0.4, 0.6), a catalyst for toxic dye degradation is synthesized through chemical co-precipitation route. The formation of the spinel ferrite catalyst is initially confirmed by Fourier transform infrared spectra, which shows the frequency of metal-oxygen bond vibration at 539 and 427 cm−1 attributed to the tetrahedral and octahedral sites respectively. Higher intensity sharp peak of X-ray diffraction for (311) plane is the evidence for the phase purity and the formation of spinel ferrite. The crystallite size is found to decrease with the increase of Al3+ ion. The surface structure of the obtained particles is investigated using a scanning electron microscope. Analyses of the material's magnetic characteristics using a vibrating sample magnetometer (VSM) revealed that it is, in fact, a soft magnet, as evidenced by the loop of its hysteresis, which is narrow. The catalytic degradation of methylene blue dye under the mechanism of the photo-Fenton process is studied with the obtained spinel ferrites and the result is found to be as high as 96.5%. The process follows pseudo-second order kinetics and the Langmuir isotherm.  相似文献   
26.
The increase in animal and agro-industrial production must be accompanied by the development of appropriate waste and by-product management strategies. Anaerobic digestion is a promising approach to recycle these wastes and reintegrate them into the economic production cycle of biogas and biofertilizer. In order to improve the performance of the anaerobic mesophilic digestion of abundant agro-industrial wastes constituted by potato peel (PP), and poultry waste (PW) and study the contribution of bovine bone meal (BB) as additive rich in phosphorus, which can help to neutralize the acidity of the substrate. The 10-point simplex-centroid design and the isoresponse surfaces strategy were used. This study demonstrated that in mesophilic bio-digestion, the using bovine bones in admixture with agroindustrial residue provided for the proper balance of chemical components required for proliferation of microbiological agent of bioconversion, which also resulted in an increase in biogas production capacity. The best formula was so composed by 66.67% bovine bone, 16.67% potatoes peel, and 16.67% poultry waste. The stability was achieved here after only 12 days. The digestate generated from it was fulfilled with the microbiological and chemical requirements for safety defined by the NF U44-551 standard. Germination test revealed that this optimal produced digestate, did not hinder growth, in fact, almost 85% of seed was germinated. Finally, fertilization experiments prove that this digestate can boost the growth of bell pepper (Capsicum annuum).  相似文献   
27.
In Pacific Northwest streams, summer low flows limit water available to competing instream (salmon) and out-of-stream (human) uses, creating broad interest in how and why low flows are trending. Analyses that assumed linear (monotonic) change over the last ~60 years revealed declining low flow trends in minimally disturbed streams. Here, polynomials were used to model flow trends between 1929 and 2015. A multidecadal oscillation was observed in flows, which increased initially from the 1930s until the 1950s, declined until the 1990s, and then increased again. A similar oscillation was detected in precipitation series, and opposing oscillations in surface temperature, Pacific Decadal Oscillation, and Interdecadal Pacific Oscillation series. Multidecadal oscillations with similar periods to those described here are well known in climate indices. Fitted model terms were consistent with flow trends being influenced by at least two drivers, one oscillating and the other monotonic. Anthropogenic warming is a candidate driver for the monotonic decline, and variation in (internal) climatic circulation for the oscillating trend, but others were not ruled out. The recent upturn in streamflows suggests that anthropogenic warming has not been the dominant factor driving streamflow trends, at least until 2015. Climate projections based on simulations that omit drivers of multidecadal variation are likely to underestimate the range, and rate of change, of future climatic variation.  相似文献   
28.

Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymerization of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.

  相似文献   
29.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   
30.
Sectorial approach for monitoring heavy metal pollution in rivers has failed to report realistic pollution status and associated ecological and human health risks. The increasing spread of heavy metals from different sources and emerging risks to human and environmental health call for reexamining heavy metal pollution monitoring frameworks. Also, the sources, spread, and load of heavy metals in the environment have changed significantly over time, requiring consequent modification in the monitoring frameworks. Therefore, studies on heavy metal monitoring in rivers conducted in the last decade were evaluated for experimental designs, research frameworks, and data presentations. Most studies (∼99%) (i) lacked inclusiveness of all environmental compartments; (ii) focused on “one pollutant – one/two compartment” or sometimes “one pollutant – one compartment – one effect” approach; and (iii) remained “data-rich but information poor.” An ecological approach with integrative system thinking is proposed to develop a holistic approach for monitoring river pollution. It is visualized that heavy metal monitoring, risk analyses, and water management must incorporate tracking pollutants in different environmental compartments of a river (water, sediment, and floodplain/bank soil) and consider correlating it with riverbank land use. The systems-based pollution monitoring and assessment studies will reveal the critical factors that drive heavy metals pollutant movement in ecosystems and associated potential risks to the environment, wildlife, and humans. Also, water quality and pollution indexing tools would help better communicate complex pollution data and associated risks among all stakeholders. Therefore, integrating systems approaches in scientific- and policy-based tools would help sustainably manage the health of rivers, wildlife, and humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号